How To Measure Anything

The Principles of Applied information Economics

Module 2

- Deciding How to Decide The Meta-Decision
- How to Measure Anything

Overcoming the Illusion of Intangibles

- Applied Information Economics

Putting What Works Together

The Myth of Immeasurability

We can't use quantitative methods based on statistics, because X can't be measured.

The Three Misconceptions Behind Any Perceived "Immeasurable"
The Illusions of Immeasurability

The Concept of Measurement

The Concept of Measurement

Misunderstanding Measurement

Accounting-style Cost estimate analysis (point estimates, deterministic)

The Need to Express Uncertainty

Risk analysis should be part of your business cases. You don't know all of the assumptions in the business case exactly. We need to be able to quantify that uncertainty.

What Measurement Really Means

Explicitly stating uncertainty is the only way to...
1)...quantify risks;
2)...compute the value of information.

Comparing Expectations to Reality

Assessed Chance Of Being Correct

Overconfidence and the Need to be "Calibrated"

- Studies also show that measuring your own uncertainty about a quantity is a general skill that can be taught with a measurable improvement.
- HDR has calibrated over 1,500 people in the last 22 years.
- 85% of participants reach calibration within a half-day of training.

A 90\% Confidence Interval

Uncertainty about "either/or" events are expressed as "discrete" probabilities (e.g. " 35%).
Uncertainty about continuous values can still be thought of as sets of discrete probabilities.

Example: Cost per kg of a particular raw material two years from now

The Three Misconceptions Behind Any Perceived "Immeasurable"
The Object of Measurement

Defining Things

If a thing seems like an immeasurable "intangible" it may just be ill-defined.

Often, if we can define what we mean by a certain "intangible" we find ways to measure it.

Examples: Brand image, Security, Safety, etc.

A Few Questions to Consider

1. What is it? (What do you see when you see more of it? Can I separate it into parts?)
2. Why do you care? (What decision could depend on the outcome of this measurement?)
3. How much do you know about it now?
4. At what point will the value make a difference?
5. How much is additional information worth?

What Do You See When You See More of It?

The "Intangible"	Possible Meanings After Clarification
"Employee Empowerment"	$-\quad$ Less management overhead
"Information	- \quad Time and costain decisions are more accurate and faster
Availability"	- Certain costly errors are less frequent
"Customer Relationship"	- Increased repeat business

The "Intangible"	Possible Decisions
"Employee Empowerment"	Are you investigating whether to implement a different organizational structure?
"Information	Are you assessing a major investment in some new information technology?
"Custability" Relationship"	Are you considering a new help desk system? Different quality control? A new service?

The Object of Measurement
What You Know, When It Makes a Difference, What It's Worth to Measure

Example: Employee empowerment

- I'm deciding whether to invest in a new technology to automate approval for common budget requests.
- Part of that decision requires we measure current time spent in that activity.
- The current estimate of time spent in that activity is 4 to 24 hours per month per employee in a particular department.

The Object of Measurement
What You Know, When It Makes a Difference, What It's Worth to Measure

Example: Employee empowerment

- I'm deciding whether to invest in a new technology to automate approval for common budget requests.
- Part of that decision requires we measure current time spent in that activity.
- The current estimate of time spent in that activity is 4 to 24 hours per month per employee in a particular department.
- If we spend more than 8 hours a month in this activity, then the new technology is justified.

Example: Employee empowerment

- I'm deciding whether to invest in a new technology to automate approval for common budget requests.
- Part of that decision requires we measure current time spent in that activity.

What is it worth to measure?

- The current estimate of time spent in that activity is 4 to 24 hours per month per employee in a particular department.
- If we spend more than 8 hours a month in this activity, then the new technology is justified.
- Information value: Based on the size of the investment and other uncertainties, it is worth $\$ 48,500$ to measure this.

The Three Misconceptions Behind Any Perceived "Immeasurable"
The Methods of Measurement

A Small Sample Example

A sample of 5

- Suppose you are extremely uncertain about how much time per day is spent in some activity in a company of 10,000 people.
- Imagine you randomly sample 5 people out of a company and they spend an amount of time in this activity as shown by the data points below.
- Is this statistically significant?
- Is it possible to estimate the chance the median time spent per person per day is between 15 and 40 minutes?

THE URN OF MYSTERY PROBLEM

There is a warehouse full of thousands of urns.
Each urn is filled with over a million marbles, each of which are red or green.
The proportion of red marbles in each urn is unknown - it could be anything between 0% and 100% and all possibilities are equally likely.

Questions:

If you randomly select a single marble from a randomly selected urn, what is the chance it is red?
If the marble you draw is red, what is the chance the majority of marbles are red?
If you draw 8 marbles and all are green, what is the chance that the next one you draw will be red?

There are widely held misconceptions about probabilities and statistics - especially if they vaguely remember some college stats.

These misconceptions lead many experts to believe they lack data for assessing uncertainties or they need some ideal amount before anything can be inferred.
"Our thesis is that people have strong intuitions about random sampling...these intuitions are wrong in fundamental respects...[and] are shared by naive subjects and by trained scientists"

Amos Tversky and Daniel Kahneman, Psychological Bulletin, 1971

The Methods of Measurement
The "Math-less" Table

Approximate 90% Confidence Interval	
Sample Size	th largest $\&$ smallest sample value
5	$1^{\text {st }}$
8	$2^{\text {th }}$
11	$3^{\text {rd }}$
13	$4^{\text {th }}$
16	$5^{\text {th }}$
18	$6^{\text {th }}$
21	$7^{\text {th }}$
23	$8^{\text {th }}$

Simple Measurement Takeaway - This table makes estimating a 90% confidence interval of a population median easy.

The Rule of Five: There is a 93.75% chance that the median of any population is between the smallest and largest values in a random sample of five.

This table expands on the Rule of Five. If you take 16 random samples of something, the $5^{\text {th }}$ largest and $5^{\text {th }}$ smallest values of that sample set approximate a 90% confidence interval.

The graph below shows the average of relative reduction in uncertainty as sample sizes increase by showing the $90 \% \mathrm{Cl}$ getting narrower and narrower with each sample according to the student-t method.

With a few samples, there is still high uncertainty but...
... each new sample reduces uncertainty a lot and the first few samples reduce uncertainty the most when initial uncertainty is high.

As number of samples increases, the $90 \% \mathrm{Cl}$ get much narrower, but each new sample reduces uncertainty only slightly and beyond about 30 samples you need to quadruple the sample size to cut the error in half.

The Methods of Measurement

Overview of The Value of Information

EVPI - Expected Value of Perfect Information

EVI - Expected Value of Information

ECI - Expected Cost of Information

Danny Kahneman

A reference class is a population from which you draw observations of events to determine their frequency. Your "reference class" is much larger than you.

You can start by making as few assumptions as possible - your "baseline" uses only your reference class

Laplace’s "rule of succession": Given a population of reference class, like company-years, where some number of events occurred:

Chance of X (per year, per draw, etc.) $=(1+$ hits $) /(2+$ hits + misses $)$

A Fundamental Equation for Measurement Methods
"Bayesian" methods in statistics use new information to update prior knowledge. It can answer "What is the chance of X is true if I see Y ?"

Bayes Theorem: $P(X \mid Y)=\frac{P(X) P(Y \mid X)}{P(Y)}=\frac{P(X) P(Y \mid X)}{\sum P\left(Y \mid X_{i}\right) P\left(X_{i}\right)}$
$P(X)=$ the probability of X
i
$P(X \mid Y)=$ the probability of X given the condition Y
$\sum P\left(Y \mid X_{i}\right) P\left(X_{i}\right)=$ the sum of the probability of Y under each possible condition

Test Your Bayesian Instinct

The Simplest Measurement Method

It turns out that calibrated people are already mostly "instinctively Bayesian."

- Assess your initial subjective uncertainty with a calibrated probability
- Gather and study new information
- Give another subjective calibrated probability assessment

- What is your 90\% confidence interval for the weight in grams of the average Jelly Belly jelly bean?
- Be sure the range is wide enough that you believe there is a 90% chance the true value is within it.
- We weigh on a digital scale a randomly sampled jelly bean from this jar. It is 1.41 grams.
- Now provide a new 90% confidence interval. Is it narrower?
- If it is narrower, it is because you had some prior knowledge about jelly beans you were taking into account. What was that prior knowledge?

The Methods of Measurement
Powerful Examples of "Impossible" Measurements

	WWII German Tank Production Estimates		
Production Period	Intelligence Estimate	Statistical Estimate	Actual
June 1940	1000	169	122
June 1941	1550	224	271
August 1942	1550	327	342

Several clever sampling methods exist that can measure more with less data than you might think.

Estimating the number of tanks created by the Germans in WWII
Clinical trials with extremely small samples

Measuring undetected computer viruses or hacking attempts

Estimating the population of fish in the ocean
Measuring unreported crimes or the size of the black market

Using "near misses" to measure catastrophic but rare events

If your measurement is challenged with limited or messy data, consider the following:

- It's been measured before.
- You have more data than you think.
- You need less data than you think.
"It's amazing what you can see when you look" Yogi Berra

Eratosthenes - In ancient Greece, he measured the Earth's circumference to within 3\% accuracy.

Enrico Fermi - He is the Nobel Prize-winning physicist who used "Fermi Questions" to break down any uncertain quantity (and was the first to estimate the yield of the first atom bomb).

Emily Rosa - At the age of 11, she was published in JAMA (youngest author ever) for her experiment that debunked "therapeutic touch."

Course Overview

- Deciding How to Decide The Meta-Decision
- How to Measure Anything Overcoming the Illusion of Intangibles
- Applied Information Economics

Putting What Works Together

